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We illustrate a derivation of a standard fluctuation-dissipation process from a discrete deterministic
dynamical model. This model is a three-dimensional mapping, driving the motion of three variables, w,
&, and 7. We show that for suitable values of the parameters of this mapping, the motion of the variable
w is indistinguishable from that of a stochastic variable described by a Fokker-Planck equation with
well-defined friction y and diffusion D. This result can be explained as follows. The bidimensional sys-
tem of the two variables £ and  is a nonlinear, deterministic, and chaotic system, with the key property
of resulting in a finite correlation time for the variable £ and in a linear response of £ to an external per-
turbation. Both properties are traced back to the fully chaotic nature of this system. When this subsys-
tem is coupled to the variable w, via a very weak coupling guaranteeing a large-time-scale separation be-
tween the two systems, the variable w is proven to be driven by a standard fluctuation-dissipation pro-
cess. We call the subsystem a booster whose chaotic nature triggers the standard fluctuation-dissipation
process exhibited by the variable w. The diffusion process is a trivial consequence of the central-limit
theorem, whose validity is assured by the finite time scale of the correlation function of §. The dissipa-
tion affecting the variable w is traced back to the linear response of the booster, which is evaluated
adopting a geometrical procedure based on the properties of chaos rather than the conventional pertur-
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bation approach.

PACS number(s): 05.70.Ln, 05.45.+b, 05.40.+]

I. INTRODUCTION

It is well known that diffusion can be derived from a
deterministic picture without recourse to the influence of
a stochastic force [1,2]. It has indeed been shown that in
the chaotic regime, the time evolution of the momentum
of the standard map is well described by the standard
diffusion equation and the dependence of the diffusion
coefficient on the perturbation strength can be described
remarkably well in terms of an analytical expression de-
rived by Rechester and White [2]. Grossmann and Fuji-
saka [3] have studied diffusive processes in one-
dimensional systems and found a drift, as well as
diffusion, and an anomalous diffusion has been discovered
by Geisel and Thomae [4].

It must be stressed that all the research carried out to
date to derive the fluctuation-dissipation relation from a
deterministic picture seems to have highlighted the deep
differences between chaotic processes and regular
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fluctuation-dissipation processes associated with standard
Brownian motion [5]. For instance, Fujisaka,
Grossmann, and Thomae [6] have found that chaos-
induced diffusion is analogous to a nonlinear Fokker-
Planck equation, and Grossmann [7], who studied the
linear response of a mapping, found that ‘“There is no
simple fluctuation-dissipation theorem, which tells a
universal proportionality of correlation and response of
the same variable.” Of course, this is distinctly different
from standard Brownian motion described by the
Langevin equation
w(t)=—yw()+&(), (1.1)
where £(¢) is Gaussian white noise, with vanishing mean
value, and correlation function
(£(0)(1)) q=2D8(1) , (1.2)

where the brackets denote an ensemble average and the
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subscript indicates the equilibrium ensemble. The tem-
perature of the Brownian particle, whose motion is de-
scribed by (1.1), is defined by the well-known fluctuation-
dissipation relation

D=y{w?) =vkT, (1.3)

the mass of the particle being conventionally set equal to
unity. Under these assumptions the process described by
(1.1) turns out [5] to have an equivalent description in
terms of the evolution of a probability density o(w;?) us-
ing the Fokker-Planck equation (FPE):

J 3?
1% 3w w+D o102

ia(w;t)=

Y (1.4)

o(w;t) .

It is well known that in this case the response of the vari-
able w to an applied perturbation can be expressed in
terms of the unperturbed two-time correlation function of
the velocity w. More recently some authors [8—10] have
studied the diffusion process resulting from a determinis-
tic picture corresponding to Eq. (1.1), with £ replaced by
a deterministic dynamical process which is a simple map-
ping. However, in this case, the equivalence in the long-
time region between the deterministic process and the
standard Brownian motion is the result of the ad hoc in-
troduction of a deterministic damping term.

In summary, it is not yet clear under what general con-
ditions a low-dimensional mapping shall have a response
that is expressed in terms of an equilibrium correlation
function. This would correspond to a conventional
description of a susceptibility for the mapping based on
the standard linear-response theory. Herein we establish
that if a variable w is weakly coupled to a system, of any
dimension, provided that this latter system is chaotic and
ergodic, then resulting deterministic motion of the vari-
able w conforms to that of a standard fluctuation-
dissipation process. The irregularities of the determinis-
tic statistics are, so to speak, washed out, by the large-
time-scale separation between the system of interest and
the chaotic subsystem. In other words, we find that the
influence exerted by the chaotic and ergodic system on
the variable w is indistinguishable from that produced by
a standard bath with infinitely many degrees of freedom.
We call this non-standard bath a booster.

For the present approach to the standard fluctuation-
dissipation process to apply to the variable of interest, the
booster has to satisfy the basic condition of responding
linearly to a constant external perturbation. If we adopt
a mapping as a booster, then we need to understand the
intriguing problem of the linear response of a mapping to
an external perturbation [7,11,12]. This problem was
previously addressed by van Velsen [11] with models that
produced a susceptibility that increased linearly with
time. Grossmann [7], on the other hand, was able to find
chaotic systems with a more convenient response, one
that reaches a stationary value asymptotically. For this
reason, the systems studied by Grossmann might be
profitable used as boosters.

Our computer calculations, carried out to support the
predictions of our theoretical approach, utilize a two-
dimensional booster, rather than the one-dimensional one

studied by Grossmann. The adoption of a two-
dimensional booster allows us to approach the linear-
response problem with a method different from that of
Grossmann; one based on physical intuition as well as on
the mathematical properties of chaos. This is, so to
speak, a mathematical realization of the Galton-billiard
argument of van Kampen [13], in other words, the
description of a chaotic system with a well-defined phase
space is given by a microcanonical distribution. As a re-
sult of an external perturbation the phase space is
modified, and the distribution is accordingly deformed,
thereby making it possible to derive an analytical expres-
sion for the corresponding stationary susceptibility. This
method has some weaknesses compared to that of
Grossmann [7], since we have to rely on the ergodic
property of a chaotic system, which is not rigorously
proved, but only numerically checked.

In this paper we present the derivation of a standard
fluctuation-dissipation process from the following three-
dimensional mapping:

W, 1 =w, +&, i >
§ni1=6n +f(§,,,7r,,,—A2w,,) ,

7Tn+1:77n +g(§n’7rn’ _Azwn) .

(1.5)

We shall discuss both the case where the first equation of
this set has k= —1 and the case with k equal to unity or
larger. The values w, are to be regarded as being the
values taken at discrete times by a continuous variable w,
the same symbol as that used in (1.1) to denote the veloci-
ty of a Brownian particle. This choice is made because,
as we shall see, (1.5) leads to a dynamics for w, that is
virtually indistinguishable from the conventional picture
of (1.1). Thus we shall refer to w as the velocity of the
Brownian particle regardless of whether we are using
(1.1) or (1.5). The functions f and g of this mapping are
obtained as follows. A microscopic system with two de-
grees of freedom is assumed to have the Hamiltonian
equations of motion

=T,

(1.6)

where the Hamiltonian for the unperturbed system is
given by H=m 7*/2+mw?/2+U(EE). These two
particle have masses m, and m, and are coupled to each
other via the interaction
2 2 3

U=%+52—+§§2—53£+g4§“—K§, (1.7
where K =0 gives the unperturbed potential. The Hamil-
tonian represents an oscillator with coordinate £ and ve-
locity 7 interacting via a nonlinear interaction with
another oscillator, with coordinate § and velocity v. The
first oscillator is perturbed by a constant field K, acting as
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the contribution to the potential —K¢&. Notice that the
intersection of the solution trajectories with the plane
£=0 results in a harmonic potential, thereby simplifying
the subsequent calculations. We make the choice m, =1,
m,=0.54. We shall refer to (1.6) as the microscopic
booster for our numerical example.

The connection between the continuous equations (1.6)
and the mapping (1.5) is obtained by following the trajec-
tory determined by (1.6) from the pair (£,,7,) on the
plane {=0, to the next intersection of that plane at
(£, + 1Ty +1)- Throughout this motion the value of the
perturbation field K is kept fixed at K=—A%w,. The
subsequent crossing determines the new pair (£, .|, 7, +)
and through the first equation (1.5) the new velocity
w, +1- In conclusion, the values (£,,7,) are obtained
from the Poincaré surface of section of (1.6) at {=0, with
K undergoing an abrupt change at any crossing of this
surface. The interval of time between the two subsequent
crossings is set equal to unity for convenience.

We would like to draw the attention of the reader to
the fact that the time evolution of the variable w, as
driven by this three-dimensional map, looks impressively
similar to a Brownian motion process. With the numeri-
cal calculation of the mapping (1.5) we evaluate the equi-
librium correlation function of the velocity,

_ {w(0w(n)q
2 b
(w?) g
and show that, as in Brownian motion, it is an exponen-

tial with damping y. Then let us consider the equilibri-
um correlation function of the variable

(1.8)

A=w>—(w?),,, (1.9)
_ (A4(0)A(1)),,
B =y (1.10)
(4%,
In the dynamically Gaussian case [6], the condition
E(t)=V¥X1) (1.11)

must be fulfilled. Figure 1 shows that this condition is
satisfied. Of course, to ensure the Gaussian character of
the random variable w(z) one should study all the
higher-order correlation functions [14], and a computa-
tional calculation of them becomes increasingly difficult
upon increase of the order of the correlation function
considered. Thus we cannot rigorously state that w is
Gaussian on the basis of (1.11). However, we believe that
it is plausible that w is Gaussian. Since the decay of the
correlation function is exponential, we would be led to
conclude on the basis of Doob’s theorem [15] that w is
also Markovian. On the other hand, a Markovian and
Gaussian process is known to evolve by means of a
Fokker-Planck equation [14]. The damping y of the
Fokker-Planck equation is determined by the damping of
the correlation function W(z). The diffusion coefficient D,
according to (1.3), is determined by the width of the equi-
librium Gaussian distribution. We see numerically that
the mapping of (1.6) leads any initial condition to the
same equilibrium distribution, and precisely that given by
the Gaussian function of Fig. 2. The width of this “ex-
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FIG. 1. Time evolution of the ctorrelation function C(?) in
the case A2=0.01. The triangles refer to C(z)=W(t), namely,
the equilibrium correlation function of the variable w. The
squares refer to C(¢t)=Z=, namely, the equilibrium correlation
function of 4 =w?—(w?),.,. The full line is a fitting exponen-
tial with the damping y;=0.0111. The dashed line is an ex-
ponential with the damping 2y,. The theoretical prediction of
Sec. I supplemented with the results of Sec. III of this paper
give a damping ¥ =0.01.

perimental” function turns out to be ({w?), )5 =38.5,
compared with the theoretical value (wz)eq=32.0 at-
tained later on in this paper. Thus, on the basis of our
numerical calculations, and within the specific limits set
by them on the determination of the higher-order mo-
ments, we can consider the system (1.5) to be equivalent
to the Langevin equation (1.1).
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FIG. 2. Equilibrium distribution function of the variable w
for A2=0.01. The crosses denote the result of the computer cal-
culation of the mapping of Eq. (1.5). The full line is a Gaussian
function with the width ({w?).,)s=238.5, which has to be com-
pared to the theoretical prediction (w?).,=32.0 resulting from
the theory of Sec. II.
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The purpose of this paper is to establish the theoretical
reasons for such an equivalence. This paper is organized
as follows. In Sec. II and the corresponding Appendix,
we give a short illustration of the linear-response-theory
(LRT) approach to the Fokker-Planck equation in the
context of a booster rather than a thermal bath. Section
IIT illustrates our approach to calculating the linear
response of a chaotic system (the booster) to an external
perturbation. Here the susceptibility is determined using
a geometrical argument on the Poincaré surface of sec-
tion. The concluding remarks of Sec. IV point out the
elements of novelty of this paper, and the advantages and
limitations of our theoretical approach.

II. THE LINEAR-RESPONSE APPROACH
TO THE FOKKER-PLANCK EQUATION

We shall explain here with simple and intuitive argu-
ments why the weak coupling between w and a booster,
with the properties which are summarized at the end of
this section, allows us to obtain a resulting deterministic
picture, namely, Eq. (1.5), with the variable w exhibiting
the conventional fluctuation-dissipation process. The
same result is recovered in the Appendix with more for-
mal arguments.

We plan to show that the system (1.5) can be described
by
d

XA? ==

aww+7(§2)0

i0(w;t)= o(w;t) . (2.1)

ot

a2
w2

d
This equation has precisely the same structure as the
Fokker-Planck equation (1.4). It consists of the linear su-

perposition of a diffusion term and a friction term. The
diffusion term has the diffusion coefficient

D:<§2>0T ’

where (&%), denotes the mean quadratic value of the
“force” evaluated in terms of the dynamics of the unper-
turbed booster. The parameter 7 is the time scale of the
unperturbed booster and it is defined by

(2.2)

=[" 2.3
= [ ewar, (2.3)
where again the normalized correlation function
(EE(2))
®(1)= §§_2£ (2.4)
(&%)

refers to the unperturbed booster. The dynamics of the
unperturbed booster is obtained from the map (1.5) by
simply setting the interaction strength A2 equal to zero,
i.e., making the action of the Brownian particle on its
bath, the so-called back-reaction term, equal to zero. If
we take into account the mapping nature of the booster,
then the time scale of the booster reads

2 <§O§n >0
(£820

Note that {£2), can be evaluated numerically from the

T (2.5)
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dynamics of the unperturbed booster. It is possible to
derive this value by adopting the analytical arguments of
Sec. IIT A. Both ways lead to the same result and yield
(£2),=0.40. The numerator of the expression of (2.5) is
then evaluated numerically from the unperturbed map of
(1.5) and the final result is 7=0.8. With the parameters
we use for the map of (1.5), the resulting diffusion
coefficient turns out to have the value D=0.32 from
which we obtain a “temperature” (w?).,=D /y =32,
which has to be compared to the value ({w?),, )5 =38.5
used in Sec. I to define the Brownian motion ‘“equivalent™
to the map under study.

In the special case where A =0, the motion of the vari-
able w is only driven by the fluctuation process, and our
theoretical result coincides with that already found by
Grossmann and Fujisaka [3], who indeed remarked on
the Kubo-like structure of the formula defining the
diffusion coefficient (see also [16]). Actually, there is a
still more direct avenue to this result. This is given by
the central-limit theorem [17]. When A=0, upon in-
crease of time the variable w becomes a sum of infinitely
many values of &, w,=§,+&,+...§,. Under the basic
condition that the variable § has a finite time correlation,
the central-limit theorem leads immediately to the
diffusion coefficient of (2.2). This is therefore a well-
assessed result, resting on the work of Grossmann and
Fujisaka [3], and still more importantly, on the rigorous
foundation of the central-limit theorem [17].

The friction term is expressed by

y=A% .

The symbol y denotes the susceptibility of the booster,
i.e., its linear response to the application of a constant
external field K to the booster. This subject has been
studied by some authors [11,7] and the results which
seem to have the closest relevance with our project are
those of Grossmann [7]. The theory developed by
Grossmann [7] would apparently allow us to use a one-
dimensional mapping as a booster. The adoption of the
two-dimensional booster described in Sec. I allows us,
however, to determine the key parameter Y by means of
geometrical arguments. This is described in detail in the
next section. The reader must keep in mind, however,
that our purpose is not that of providing original results
on the linear response of a simple mapping to an external
perturbation. Rather, we plan to establish that the
response of the variable w of the composite system (1.5),
namely, w plus booster, obeys a standard linear-response
theory, i.e., we show that w is driven by a standard
fluctuation-dissipation process.

For this purpose, it is necessary for us to demonstrate
that the friction of Eq. (2.6) stems from the same interac-
tion which generates the diffusion process and the corre-
sponding diffusion coefficient of (2.2). This can be shown.
by using the wide time-scale separation between w and
booster (which can be controlled by decreasing the inten-
sity of the interaction strength A?). Let us assume that
the variable w is given an initial value so large as to make
it possible to neglect the fluctuations resulting from the
chaotic motion of £&. Notice furthermore that if the vari-
able w moves very slowly, then its rate of change is deter-

(2.6)
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mined by the mean value reached by £ at a fixed w (imag-
ined as being constant). In other words, the first equation
of (1.5) is equivalent to

w=(£), 2.7)
where with (&), we denote the mean value of £ reached
in the presence of the external field K = —A%w. Here is

where we use the LRT which, as shown in the next sec-
tion, after abrupt application of an external field K,
shows that the variable w reaches the mean value (&) g,

(EYx=xK . (2.8)

The next section is devoted to the evaluation of the sus-
ceptibility Y. Here we limit ourselves to remarking that
if we replace K with —A%w in (2.8) and we plug the re-
sulting expression into (2.7), the phenomenological damp-
ing equation

w=—yw (2.9)

is recovered, with the friction y given by (2.6).

Finally, to derive the Fokker-Planck equation (2.1) we
must make the assumption that friction and diffusion can
be linearly superimposed upon one another. In the Ap-
pendix we derive this property, with more rigorous argu-
ments, as a natural outcome of a perturbation-projection
method.

Let us summarize the properties of the booster which
are necessary to derive the Fokker-Planck equation of
2.1).

(i) The booster has an asymptotic invariant measure.
We have seen that we can select a stochastic (completely
chaotic) system for the booster that is also ergodic and in-
habits any small volume in phase space for a limited time.
This enabled us to define an equilibrium probability den-
sity (invariant measure), in terms of which the mean
quadratic value

()= [ Epey&mdéd , (2.10)
Q

where () is the domain of the phase space over which the
variables are defined, is a well-defined positive definite
quantity (without loss of generality we focus on the con-
dition (£),=0).

(ii) The booster has a finite time scale. The characteris-
tic time of the booster, 7, is defined by (2.3).

(iii) The booster responds linearly to an external pertur-
bation. When we apply an external perturbation K to the
booster, we find that within a very short time, character-
istically ~ 7, the booster reaches a new equilibrium distri-
bution with a mean value given by (2.8).

(iv) Coarse graining in time. The microscopic booster
is studied on a time scale much greater than its intrinsic
time scale. This is the reason why it turned out to be pos-
sible to adopt the master-equation approach discussed in
the Appendix. The detailed structure of the master equa-
tion to be used is not known, nor is it necessary to know
it. It is only necessary to set the constraint that this mas-
ter equation must satisfy and still lead to the same equi-
librium correlation function and the same susceptibility
as the true booster.
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III. CHAOS AND FRICTION

Within this section we will illustrate an approach to
determining the linear response of a booster which the
reader should compare to that used by Grossmann [7].
Thus the derivation of a stationary value for the suscepti-
bility of a mapping illustrated here is not a novel result,
but it is different from that used by Grossmann and it is a
crucial step in deriving our final result on the convention-
al fluctuation-dissipation process driving the variable w.
Here we show that the chaotic properties of the booster,
which prevent us from using the conventional LRT of
Kubo [18], nevertheless lead us to an analytical deter-
mination of ¥, and this analytical result is made possible
by the chaotic properties of the booster and its conse-
quent ergodicity.

A. Definition of the map dominion

Let us consider the system described by the equation of
motion (1.6), i.e., the system with the Hamiltonian
m 7T2 m 2 +

2
5 +—2-—+U(§,§,K) .

H= (3.1)
We study the behavior of this system at a fixed value E of
its mechanical energy and look for appropriate parameter
values that give rise to a chaotic motion. Since the ener-
gy E is a constant of motion, the four variables &, &, m,
and v are not independent. The velocity variable v can be
considered as a function of the other variables and of the

energy E:
12
R

In the three-dimensional space &,&,7 the trajectories of
the system lie inside a domain Q(E), defined by the con-
dition

v2=>0,

mm?

2

2

mj

v= E —

—U(§,6,K)

(3.3)

imposed by energy conservation. This domain is sur-
rounded by the surface S (E) defined by the region of the
phase space where v =0, namely,

ml7TZ

2

E_

—U(§,6,K)=0. (3.4)
The surface S (E) is shown schematically in Fig. 3.

The “thermal bath” of our Brownian particle w is a
booster obtained as a Poincaré map of the generating sys-
tem (1.6). Let us consider the Poincaré map correspond-
ing to the intersection of the trajectories inside the dom-
inion Q(E) with the plane defined by {=¢&*; &* will
denote a generic fixed value of the variable {. The points
of the Poincaré map lie within a manifold £ given by the
intersection of the domain Q(E) with the plane {=¢&*.
The manifold X is formally defined by the condition

m17T2

2

The manifold X is illustrated in Fig. 4 for the case K =0.
The Poincaré map is area preserving; then the invariant

E— U(EE*,K)=>0 . (3.5)
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FIG. 3. A schematic illustration of the dominion Q(E) with
the surface S(E).

measure is the Lebesgue (or flat) measure du=d§dv,
where € and v are the coordinates on the plane §=¢&*, i.e.,
the variables of the booster.

Due to the chaotic and ergodic dynamics of the gen-
erating system given by Eq. (1.6), the dynamics of this
Poincaré map is mixing; then y is the unique invariant
measure on 2 and almost any distribution function re-
laxes to the flat distribution. Thus the mean value and
the mean square value of the booster variable £ are re-
spectively given by the following expressions:

— b
(&) ffzdédw (3.6)
and
2
(&)= ffzg acdm 3.7)

[ fazan

B. Response to a weak external perturbation

Let us now consider the unperturbed Hamiltonian H
given by

T = ()

(S SEH &

FIG. 4. Schematic illustration of the intersection between the
dominion (E) and the plane {=£* (Poincaré plane), i.e., the =
domain.

mym* myv?

H,= +

0 2 2

where Uy(§,6)=U(§,6,K =0). We will denote quanti-

ties referring to the unperturbed system (K =0) with the

subscript 0. However, for the sake of notational simplici-
ty, we will use the definition

V(E,5)=Uy(E,8),

which, using the explicit expression in (1.7) for the poten-
tial, yields

+Uy(E,8), (3.8)

(3.9)

V(§,§)=%2+%2+§§2—§—;£+§4§‘. (3.10)

Let us assume that the perturbation H, =K ¢ is switched

on at t =0. Thus the resulting total Hamiltonian reads:
m,m  my?

H=—7—

_ mmt my?

=7 T2

=H,+H,,

+U(§,56,K)

+V(EE)+OMKE

(3.11)

where O(¢) is the unit step function, namely ©(¢)=0 for
t <O0and ©(¢)=1for t 20.

Let us imagine that we are dealing with an ensemble of
systems. Suppose that an individual unperturbed system
of the ensemble has coordinates £(0),£(0),7(0) and ener-
gy E(07)=E. Immediately after the abrupt application
of the perturbation, the system behaves as if it has “felt”
the influence of the additional potential K§&. If ¢ =0 is
the time when the external perturbation is applied, that
individual system of the ensemble will have the new ener-

gy,
m;m(0)>  m,v(0)?

+:
E(0TM) > )

+U(£(0),6(0),K)

=E +KE(0) . (3.12)

In the following time evolution the system will have an
energy E (0™) fixed, with obviously

E(0")=H,(& & mv)+KE . (3.13)
From (3.12) and (3.13) follows that
E=Hy(&Cmv)+K(E—E0)=H,+H, . (3.14)

From now on E in (3.14) will be a quantity constant in
time, while the resulting interaction term will change in
time with the motion of &, according to the definition
(3.14) and to the specific value £(0) that £ has at the time
the external perturbation is abruptly switched on. _
It is important to note that if the interaction term H
is small enough the domain Q(E) is slightly modified
from the unperturbed one. By contrast the individual
trajectories are sensibly dependent on the perturbation,
whatever its intensity due to the assumption that the un-
perturbed system is in the chaotic regime. This is a cen-
tral property, on which our LRT treatment rests. As
pointed out by van Kampen [13], LRT is not applicable
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to the single trajectories, i.e., at the microscopic level, but
it can be recovered in a statistical sense.

Thus from the geometric deformation of this dominion
we easily derive the corresponding change of the mean
value of the variable £ of the Poincaré map, thereby
determining the susceptibility y of the booster. The addi-
tional potential K(£—&(0)) moves the extrema £x(&*)
and £;({*) of the Poincaré map domain towards the
right (with K <0) or the left (with K >0) in a continuous
way. This is equivalent to saying that, although the
linear response in the sense of Kubo is not justified [18],
the system admits linear response in the sense of van
Kampen [13]. For enough small values of K, Eq. (2.8) ap-
plies, and from Egs. (2.8) and (3.6) we obtain

3 [ [Ededn
0K | [ [ dedn

With the choice {* =0, the condition (3.5) becomes par-
ticularly simple: using the Hamiltonian (3.14) with the
unperturbed potential given by (3.10) and £* =0, we ob-
tain the following expression for the manifold =:

(3.15)
=0

2 2
E—m,%—%———K(é’—é‘(O))ZO : (3.162)
which can be rewritten as
mm?+(E—K)?—[2E +2KE0)+K2]<0. (3.16b)

The points that satisfy the inequality (3.16) are those
that lie within the region of the {=0 plane surrounded by
an ellipse centered on §, =K, w,=0. It follows that the
mean value (&) of the booster variable &, calculated from
Eq. (3.6), is equal to K, and it is independent of the value
£(0). From Eq. (3.15) we get immediately that

x=1. (3.17)

C. The transport coefficients of FPE

We are now in a position to complete the derivation of
the transport coefficients of (1.4), namely the diffusion
coefficient D of (2.2) and the friction y of (2.6). The un-
perturbed energy of the booster is set at E =0.8. With
this choice of the energy value the booster is in a very
chaotic regime, and the intersections of the chaotic tra-
jectories with the plane =0 are randomly distributed
over the accessible Poincaré phase space (see Fig. 5).
Furthermore, the numerical calculation shows that the
modulus of the greatest Lyapunov exponent is larger than
4. The system is proved to a very good approximation to
be ergodic since the numerical calculation shows that the
distribution of the points on the Poincaré map is a flat
function. Therefore to obtain the transport coefficient we
can use the results of Secs. III A and III B.

According to the theory of Sec. II and the Appendix,
the derivation of the diffusion coefficient D rests on the
properties of the Poincaré map of the unperturbed boost-
er; more precisely, D is obtained by multiplying 7 defined
in (2.3) by (£%),. This latter quantity is given by (3.7)
supplemented with (3.16). As far as the friction y is con-

T T T T T
-1.0 -0.5 0.0 0.5 1.0

FIG. 5. Distribution of the intersection of the trajectories of
Eq. (1.6) with the plane =0 in the chaotic case corresponding
to E=0.8.

cerned, we have to use the susceptibility y of the booster;
thus from (3.17) we have y=1, i.e., from (2.6) y =A2
Thus in the physical condition of Fig. 1, we get ¥y =0.01
and (w?).,=D/y=32, which are precisely the values
pointed out in Sec. I to be in remarkably good agreement
with the numerical result. Of course, the theory we have
been using implies a large time-scale separation between
system and bath. This means low values of the coupling
strength A2. How low the values must be for the LRT to
hold true can be illustrated by making a comparison be-
tween the numerical and the theoretical predictions of
(w?),, for different values of the coupling strength A%
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FIG. 6. The equilibrium mean square velocity as a function
of A% The black squares denote the result of the numerical
solution of the mapping (1.5). The solid line refers to the
theoretical prediction of Eq. (3.18). Note that (£2),=0.53, de-
rived with both numerical calculations on the unperturbed
booster and analytical calculations and 7=0.8 (as a result of a
numerical calculation on the unperturbed booster) and y=1,
according to the analytical prediction of (3.17).
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This quantity is the ratio of the diffusion D to the friction
v. Thus from (2.2) and (2.6) we get the theoretical pre-
diction

2
<w2>eq=‘<—i‘%‘£ .

Figure 6 shows that the accuracy of the theoretical pre-
diction is fairly good in the region of extremely weak cou-
pling strengths. As expected, in the region of higher cou-
pling strengths the departure from the FPE prediction
becomes increasingly large upon an increase of the cou-
pling strength. The physical effects of the deviation from
the linear condition shall be the object of investigation of
future papers.

(3.18)

IV. CONCLUDING REMARKS

This paper shows that the mapping (1.5) can be used as
the generator of Brownian motion with finite friction.
The elements of novelty of the present analysis compared
to the preceding approaches [1-10] are evident. We
have derived a standard fluctuation-dissipation process
by coupling our system to a booster. This means that the
velocity w should respond to external perturbation ac-
cording to the standard predictions of the Kubo LRT.
This is obtained without invoking the chaotic and ergodic
condition on the whole system, but only on a subsystem
of it (the booster). The statistics of the booster can be
distinctly different from the Gaussian statistics and its
response does not need to adhere to the predictions of the
conventional LRT. Then, the chaotic dynamics of the
booster is filtered and perceived as regular Gaussian
statistics by the system of interest. However, the booster
must respond linearly to an external perturbation acting
on it, and this technical aspect, subsidiary to the major
purpose of deriving a conventional fluctuation-dissipation
process out of a deterministic picture, is here approached
with a method inspired by physical intuition, which
makes transparent why linear response (not necessarily in
the form of the conventional one predicted by the Kubo
LRT) can be derived in spite of the highly nonlinear
response of the single trajectories. We adhere to the spir-
it of the arguments raised by van Kampen, and derive the
linear response of the booster without adopting a pertur-
bation approach. We do not address the problem of
whether or not the resulting susceptibility can be written
in terms of the equilibrium correlation function of the
variable £. Further, the possibility of expressing the
response in terms of an equilibrium correlation function
is not completely ruled out by the results of Sec. III. The
central result of this paper is not affected by the resolu-
tion of this problem, whatever it might be: This is so be-
cause for the demonstration that w obeys a standard
fluctuation-dissipation process, it is only necessary that,
after a perturbation, the booster very quickly reaches a
state with a stationary susceptibility.

The ergodicity of the booster is assumed in our analysis
rather than being mathematically proven. This might
have raised difficulties, due to the fact that, as shown by
Dahlqvist and Russberg [20], small stability islands can
escape the numerical investigation. However, it is easy to

show that these stability islands when they exist produce
a breakdown of the LRT at such small values of the per-
turbation —AZ%w that the process is dominated at that
stage by diffusion, thereby remaining totally unaffected
by an extremely weak nonlinear drift.

The mapping studied in this paper has a physical ori-
gin which does not fulfill the Hamiltonian constraints on
the interaction between the Brownian particle and boost-
er even when the unperturbed booster is Hamiltonian as
it is here. It must be noticed that the change in the ener-
gy of the booster at the (n +1)th “collision” with the
Brownian particle is

(AE)n+1=A2§n—k§n+k »

and with the choice adopted, i.e., kK =1, due to the fact
that £, _, does not have any significant correlation with
£,+1 the mean energy of the booster remains virtually
unchanged, thereby mimicking the behavior of ideal
thermal baths. We also took into consideration the case
k=—1, a value of k which makes the whole system area
preserving. In this case the mean change in the energy of
the booster at any collision does not vanish. Instead the
relative value of the mean energy change is given by

(AE/E)=AXE)/E~A*=y/x .

(4.1)

(4.2)

This implies that in a time scale of the order of the mac-
roscopic relaxation time the energy of the booster
changes by 100%. In this situation the conditions under
which the Fokker-Planck equation (2.1) is obtained, with
time-independent transport parameters, are violated.
The change of the energy of the booster in the case in
which k=—1 is not surprising, even if the LRT
developed in this paper does not predict this. In fact the
LRT is a perturbative theory, thus it holds on a “meso-
scopic” time scale, i.e., on a time scale much larger than
the microscopic one but not necessarily larger than the
macroscopic relaxation time 1/y. This does not invali-
date our LRT treatment, but only implies a slight
modification of the theory so as to take nonstationary
conditions into account. We divide the macroscopic time
region explored into many time intervals, each of which
is much larger than the microscopic time scale but still
much shorter than the macroscopic one. In each interval
the conditions for the Fokker-Planck equation (2.1), with
a time-independent friction, are fulfilled. Thus in the
macroscopic time scale we obtain a Fokker-Planck equa-
tion with a time-dependent friction, and no stationary
condition. With the choice k = 1 we bypass this problem,
thereby making the booster mimic very well the influence
of a thermal bath with an infinite number of degrees of
freedom.
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APPENDIX

Let us write the system to study in the continuous time
representation

w=¢,

) (A1)
E=R(&m, —Aw) .

Let us study this system in a Liouville-like representation
[21]. This reads

%p(w,é’,ﬂ';t):(,ﬁa + Lt Ly pw,E,m5t) ,
where p(w,§,m;t) is the Liouville-like density function at
time ¢ of all the variables defining the system of Eq. (1.8).
Here the Liouville-like operators are those for the system
dynamics £L,, the bath dynamics .£,, and the system-
bath interaction .£; ;. From (A1) we conclude that the
Brownian particle does not move without the bath

£,=0

(A2)

(A3)

and

LintELRF—ga% . (A4)
L expresses the action of the reaction field on the bath.
This is hard to define when, as we must do, explicitly
referring to the discrete time representation of (1.5). This
difficulty is bypassed by having recourse to the time-scale
separation between system and booster. The booster is
studied in a time scale much more extended than its own
time scale. Thus rather than to its exact Liouville-like
equation for its Liouville-like function, we use a master-
equation approach driving the probability distribution of
it. In other words, we make the following replacement:

Lpp+ L, —->T(—Aw,E7), (A5)

where T'(—A%w,&7) is a master-equation operator
describing in the coarse graining representation the dy-
namics of the booster under the action of the field
K =—Aw. Therefore this operator also takes into ac-
count the effect of the interaction contribution which
refers to the action exerted by the system of interest on
the booster.

Let us leave for a moment the problem of the system
coupled to the booster, and focus our attention on the
problem of the response of the booster to an external per-
turbation by means of the master-equation formalism.
This means that we have to deal with the following equa-
tion of motion:

% (&,mt)=T(K,E m)p(§,m;t) , (A6)
where p(£,m;t) is the coarse-grained probability distribu-
tion of the variables £ and , rather than the correspond-
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ing Liouville-like function. Note that at K =0 the opera-
tor I'(K,&,7) must be reduced to I';, which is the
master-equation operator describing the unperturbed dy-
namics of the booster,

9

a3 (&,mt)=Typ(&,mt) . (A7)
The equilibrium distribution of this master equation,
Polx,p), is by definition the probability distribution
fulfilling the equation

Iypol&,m)=0.

Indicating the averages over the equilibrium solution to
the master equation of the unperturbed bath by a zero
subscript,

(A)o= [ dedm Alg,mIpolE,m) ,

(A8)

(A9)

we can write the autocorrelation function for the door-
way variable as

D(1)=(Eexp(Tyt)E(0)) /() , (A10)
so that we can express the correlation time 7 as
= [ " owar . (A11)

The correlation time is the characteristic time scale for
the booster process and we assume that the time evolu-
tion of the variable £ driven by the master-equation ap-
proach leads to the same time correlation time as that re-
sulting by a numerical treatment of the trajectories of
(1.5) with K =0. Note that the definition itself of the
normalized correlation function of Eq. (A10) implies that
the bath is characterized by an equilibrium distribution
over which the doorway variable gets a well-defined mean
quadratic value, {£2),,.

According to the linear-response property (which is
made possible by the adoption of the master-equation ap-
proach) with K’s weak enough we must also have

I=T,+KT, . (A12)

The master-equation operator I'; must be defined in such
a way as to fit the result of the linear response outlined
above. To do that, let us solve Eq. (A12) with the pertur-
bation method. The first-order perturbation leads us to

%Pl(g’ﬂ';t)=F0P1(§y77';t)+Kr1_po(§,7T) . (A13)
from which we obtain the following time evolution:
p(E,mt)=K fo’dt'exp[ro(z — )T polEsm) . (Al4)

Using this expression to evaluate the mean value of the
doorway variable at the time ¢ we finally get for the
response function x(¢) the following expression in terms
of I'y:

x= [ C&uT )t (A15)

where, of course, the time evolution of £ is driven by the
operator I'y adjoint to I',. Before proceeding with the
foundation of the FPE we must stress that the expression
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Eq. (A14) is the result of a first-order treatment of the
process statistically, and only statistically, equivalent to
the original Liouvillian-like problem. In the case of a
chaotic microscopic system this might turn out to be re-
markably different from a first-order approach within the
Liouville space. Actually, the master-equation approach
takes explicitly into account the fact that chaos makes a
deterministic treatment inadequate. It is quite remark-
able that the master-equation approach makes it possible
to adopt a perturbation treatment. A possible explana-
tion is that chaos is generated by strong nonlinearities
and it is incompatible with the adoption of a perturbative
treatment, which is closely related to the assumption of
linearity. However, although linearity is incompatible
with the behavior of individual trajectories, chaos results
in a linear behavior in a statistical sense.

Let us now come back to studying Eq. (A1l). Within
the theoretical framework of the master-equation ap-
proach Eq. (A2) can be replaced by the equation

9 = | —g9 a2
atpl-(w,é,fr,t) §8w +A‘wl;+ T

X pr(w, &,m5t) . (A16)

Here pr(w,§,7;t) is a probability rather than a density
[the conventional meaning of p(w,&,m;¢t)]. To be more
precise this function is the result of a coarse graining only
on the space of the variables £ and 7, and coincides with
the density function as far as the variable w is concerned.
The FPE for the contracted probability distribution

o(w;t)= fdé‘dwpr(w,é‘,'zr;t) (A17)

is easily obtained by using the projection-perturbation ap-
proach of Ref. [22], at the second order. We obtain

ia(w;l‘)=

” S (lexp(ThE1E Y,

2

aZ
Jw

+A25%w fo’(exp(rgt')grl>0dt'la<w;t),

(A18)
which can be rewritten as
—aa?a(w;t)= {(§2>07(t) a?; +A2%wx(t) olw;t),
(A19)
with
0= [ P(s)ds (A20)

and x(z) given by (A15). We remind the reader that ®(s)
is the unperturbed correlation function of the doorway
variable £, defined by Eq. (2.4). Note that we use the con-
vention
T=7(00) . (A21)

For t going to infinity Eq. (A20) tends to the standard
FPE of Eq. (1.4) with
y=4a%, (A22)

where Y denotes the stationary value of the response x(t),
given by

— —_— *® ’ ’ —_— 1
Y=x(eo)= [ 7 d (£ )= <§F0—r1>0 . (A3

Thus the central result of Eq. (2.1) is derived.
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